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ABSTRACT 

The hemolytic uremic syndrome (HUS) of children was originally described as a triad of 

acute renal failure, fragmented red blood cells (RB Cs) and thrombocytopenia. This 

syndrome is most often associated with infection with Escherichia coli 0 157:H7 and the 

shiga-like toxin (STX) it produces. One of the proposed pathogenic mechanisms ofRBC 

fragmentation was damage to RBCs as they were forced through fibrin thrombi that occur in 

the renal microvasculature. However, direct damage to RBC by E. coli toxins may also be 

involved. In order to better understand the mechanistic basis of RBC fragmentation during 

HUS, two studies were carried out. The first examined the utility of computerized image 

analysis and a single shape factor equation ( {Crofton perimeter2}+{ 4*n* Area}) to quantify 

the degree of poikilocytosis in calves infected with E. coli O 157 :H7. The percentage of cells 

with different shape factor scores were compared in calves prior to and after infection with E. 

coli 0157:H?. Cell shape was also manually scored by two investigators. No significant 

increases in poikilocytes were detected using either image analysis or manual scoring in 

calves after infection with E. coli. Crenation of calfRBCs caused the greatest discordance 

between image analysis and manual scores. The tendency of normal calves to have crenated 

RB Cs impaired the usefulness of the image analysis procedure and a single shape factor 

equation. The second study examined the direct effects of STX on human RBCs in vitro and 

found no significant differences in osmotic fragility or RBC membrane proteins as evaluated 

with polyacrylamide gel electrophoresis. The effects of STX on RBC adhesion to confluent 

layers of cultured endothelial cells was studied using a gravity adherence assay. STX was 

incubated with human microvascular endothelial cells and uptake of the toxin by the 
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endothelial cells was confirmed by immunofluorescence. RBCs were added to the chamber 

and incubated at 37°C for 30 minutes. No increase in RBC adherence to endothelial cells 

was observed after incubation with STX. The mechanism of human RBC fragmentation is 

likely an indirect effect of STX. Combinations of E. coli toxins, including 

lipopolysaccharide, may also be involved in the pathogenesis of RBC fragmentation. 
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GENERAL INTRODUCTION 

Literature Review 

In 1955, Swiss hematologist Conrad von Gasser published the first report of five 

children dying of what was described as a hemolytic uremic syndrome (HUS). The cases 

were identified by the now classic triad of thrombocytopenia, renal failure and fragmented 

red blood cells (RBCs). 1 For several years after the initial report, there were attempts to 

understand the cause of HUS. In 1983, Karmali made important observations by recovering 

shiga-like toxin (STX) and/or shiga-like toxin producing Escherichia coli (STEC) from the 

feces of children with HUS.2' 3 It is now widely believed that the effect of STX on the 

endothelial cell, particularly in the renal glomeruli, is the principal lesion that results in 

HUS.4 

HUS is a leading cause of acute renal failure in American children. Approximately 

73,000 cases are reported each year with 65 fatalities. 5 Since the requirement for disease 

notification has begun, there has been a steadily increasing trend of cases of HUS in the 

United States.6 It is estimated that HUS causes the death of approximately 250 children each 

year with permanent renal dysfunction a problem for nearly one-third of the survivors.7 

While most cases of HUS occur in children under five years of age, elderly adults are also 

identified as having increased susceptibility to the disease with several outbreaks being 

reported in nursing homes.8 Many cases of HUS have been associated with consumption of 

contaminated ground beef that was improperly prepared, 7•9 although other methods of 

transmission have been reported. 

After exposure to E. coli 0157:H7, there is a latent period of 1 to 9 days, followed by 

severe abdominal cramps as the usual initial complaint. 8 Watery diarrhea rapidly follows and 
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may progress to bloody diarrhea in 35 to 90 percent of the cases.7 Laboratory evaluations 

usually reveal leukocytosis with a left shift. Histologically, the colon lesions are often 

characterized by submucosal edema, hemorrhage and deposition of fibrin, with less frequent 

capillary thrombosis, ulceration or suppurative inflammation. 8 Renal histopathology often 

reveals glomerular thrombosis, necrosis or, in adults, intimal proliferation. Severe cases may 

undergo complete renal cortical necrosis. 10 Resolution of the diarrhea often occurs within 

one week during uncomplicated infections, however, approximately 6% of the patients 

develop HUS 2 to 14 days after the onset of diarrhea. Factors that tend to be indicative of 

progression to HUS include high fever, age and leukocytosis with a left shift at the time of 

presentation. 7 

Shiga-toxins produced from E. coli belongs to a family of toxins, the prototype of 

which was named for the bacterium Shigella dysenteriae. Because this family of toxins was 

originally studied on Vero cells (kidney cells from the African green monkey), the synonym 

verotoxin is common throughout the historical literature and remains in use today. 11 Human 

infections with STEC are usually associated with STX 1 or STX 2, with STX 2 most often 

associated with cases of HUS. 12 STX 1 is nearly identical to the toxin produced by Shigella; 

STX 2 is approximately 60% identical with STX 1. STX 2e is the cause of pig edema 

disease and has been found to have approximately 90% sequence identity with STX 2. 13 STX 

1 and 2 are encoded on a bacteriophage. 14 Members of the STX family exhibit similar 

protein structure, composed of a catalytically active A subunit and a receptor binding B 

subunit. The A subunit is approximately 33 kDa; the B subunit forms a pentamer from 

interlocking monomers of 7.5 kDa. 15 The central core of the B subunit pentamer interacts 

with the alpha-helical carboxy terminus of the A subunit and maintains the stability of the 
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holotoxin. 16 Assembled toxin is not actively secreted from the bacterium; lysis of the cell 

must occur before toxin is released. 14 

The Shiga family of toxins bind neutral glycolipids on the surface of host cells. The 

specific receptor for both STX 1 and 2 is globotriaosyl ceramide (Gb3, Galactose a[1 • 4]

Galactose P[l • 4] glucosyl ceramide ). 13 In addition to the name Gb3, this glycolipid has 

been called the Burkitt's lymphoma antigen, CD77 and human blood type pk_ 17 In contrast, 

STX 2e binds Gb3, but its preferred receptor is globotetraosyl ceramide (Gb4, N

acetylgalactosamine P[1 • 3] Galactose a[1 • 4]-Galactose P[1 • 4] glucosyl ceramide). 13 

The Phe30 site of the B subunit of STX 1 has been shown to be an important site for 

interaction between the toxin and its receptor. Other sites, such as the Trp34 site, have been 

studied and may yet prove important for toxin interaction with its receptor. 16 In addition to 

presentation of the Gb3 glycolipid, the length and degree of saturation of the remainder of the 

lipid alters the ability of the toxin to bind to the receptor. Chain lengths between 14 and 22 

carbons and higher degrees of chain unsaturation have been show to maximize STX 1 

binding. It is proposed that the chain length of the lipid influences the three-dimensional 

structure of the receptor and the bound toxin and ultimately affects the stability of the 

. 1 13 receptor-toxm comp ex. 

The shiga toxin family has a unique, and still not fully understood means of 

intracellular transport and activation. Once the toxin is bound to Gb3, it is internalized via 

clathrin dependent mechanisms. This is in contrast to cholera and tetanus toxins that also 

bind lipid receptors but are internalized without utilizing clathrin. 18 Once internalized, the 

majority of the toxin is transported to lysosomes and undergoes degradation; approximately 

10% of the toxin is transported to the Golgi apparatus. 19 Transport of toxin to the Golgi 
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appears to be an important step in the intoxiation process as disruption of the Golgi with the 

drug brefeldin A or blocking Golgi transport with low temperatures (18 - 20° C) will prevent 

cell intoxication with STX. 18 

Ultimately the toxin reaches the endoplasmic reticulum (ER). The mechanisms of the 

transport are still unclear, although some have proposed that toxins in this family associate 

with or mimic the ER retrograde transport signal sequence, otherwise known as the KDEL 

amino acid sequence. Other proposals suggest that low numbers of lysine residues in these 

toxins allow these toxins to escape ubiquitin degradation in the ER.20 During intracellular 

transport, the A subunit interacts with furin, a membrane bound enzyme in the endoplasmic 

reticulum. This enzyme cleaves the A subunit into the N-terminal Al fragment (27 kDa) and 

a smaller 4 kDa A2 fragment. A disulfide bond initially joins the two fragments at cysteine 

242 and cysteine 261, although eventually the catalytically active Al fragment is released. 14 

The Al fragment acts to inhibit protein synthesis and causes cell death by removing adenine 

4324 in the 28S RNA of the 60S ribosome. 13 

Red blood cell morphologic abnormalities are one of the classic features of HUS. 

. h 1021 Th Blood smears often reveal sch1stocytes, fragmented RBCs or sp erocytes. · e 

mechanisms by which these changes develop remains unclear, however. The initial cause of 

RBC fragmentation was ascribed to membrane damage as cells flowed through fibrin 

thrombi, particularly those in renal vessels.22 This mechanism was subsequently studied in 

vitro by observing RB Cs flowing through a network of fibrin coated glass beads. The 

researchers observed hemolysis and RBC fragmentation in these cells that were subjected to 

adhesion and turbulent flow for 20 minutes.23 Several researchers from that group also did 
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an in vivo study in rabbits that documented appearance of fragmented RB Cs during and after 

induction of snake venom defibrination.24 

Despite these findings, it has been puzzling that some patients with typical clinical 

signs and renal lesions of HUS lack the fragmented RBCs and hemolysis that was classically 

described.25 One area ofresearch on RBC abnormalities in HUS has focused on oxidative 

damage to red cells. The initial study in this area found RBCs from patients with HUS had 

decreased levels of phosphatidyl ethanolamine and plasma tocopherol. The authors of this 

study suggested that RBC oxidative damage may occur during HUS.26 Their findings were 

subsequently confirmed by other researchers. 27 Other studies have added to the evidence of 

RBC lipid peroxidation by noting decreased levels ofRBC arachidonic acid,28 reduced 

glutathione29 and superoxide dismutase30 in HUS patients as compared to controls. A more 

recent study has again concluded that RB Cs from HUS patients have evidence of lipid 

peroxidation and correlated this to lower red cell membrane fluidity.31 These studies suggest 

that lipid peroxidation may contribute to the hemolysis observed in HUS patients. 

Another possible mechanism for RBC damage and hemolysis is direct damage from 

E. coli toxins. In addition to shiga-like toxins, E. coli O157:H7 produces hemolytic toxins. 

The best known of these hemolytic toxins is the a-hemolysin, also known as HlyA. This 

toxin is a member of a group of similar toxins produced by a number of different bacteria. 

These toxins share tandemly repeated glycine-rich nonapeptides toward the carboxyl 

terminus of their structure that have given rise to the group name "repeats in toxin" (RTX).32 

HlyA, a product of the hlyA gene, is actively secreted from the cell utilizing a transport 

system composed ofHlyB, HlyD and the outer membrane protein TolC. 33 To be fully 

functional, lysine residues 563 and 689 ofHlyA must undergo acylation by HlyC.34 
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Morphologic studies have shown that hemolysin binding to sheep RBCs was sufficient to 

induce shape changes within five minutes of treatment. 35 More recent studies have shown 

that HlyA induces hemolysis by insertion of pores in the membrane that leads to influx of 

water and eventual bursting of the cell. 36 Binding ofHlyA to the cell is independent of 

temperature and calcium concentration,37 while lysis of the cell can only occur if calcium 

binds to the tandem repeat sequences prior to cellular adhesion.38 

In addition to HlyA, another RTX family hemolytic toxin from E. coli has been 

recently described. 39 This toxin, termed "enterohemolysin" (Ehx) is encoded on the 90 kb 

plasmid pO157 and lyses fewer cell types than other RTX toxins.40 Unlike HlyA, Ehx 

activity was not found in culture supematants and suggests that Ehx is not actively secreted 

from the cell.41 There appears to be some controversy in the literature concerning the 

substrate requirements and cell specificity ofEhx with one study reporting that Ehx was not 

calcium dependent and was unable to lyse human RBCs41 and another observing a calcium 

requirement and the ability to lyse human RBCs.40 One aspect of the newly identified toxin 

that is of particular interest is the strong correlation of human disease to the presence ofEhx. 

In bacterial isolates from patients with HUS, 16 of 18 were enterohemolytic and expressed 

Ehx, while only 4 of 18 isolates from other diarrhea cases were positive for Ehx. 42 In 

addition, 19 of 20 HUS patients had Ehx antibody in recovery serum samples, while only 1 

of 20 controls had a similar antibody.39 

While red cell fragmentation and hemolysis are important clinical features of HUS, 

the role of toxin binding to RBCs in the pathogenesis of the other clinical signs and 

histologic lesions has also received some research attention. One study specifically 

examined the ability of different toxins within the shiga toxin family to bind to RBCs of 
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various P blood groups. They found that binding of STX 1 and STX 2 to RBCs correlated to 

the amount of Gb3/Pk antigen expressed on RB Cs; cells from donors that lacked this antigen 

failed to bind STX lor STX2. The blood groups that express the pk antigens are phenotypes 

Pl (also express P and Pl antigens), P2 (also expresses P antigen) and pk2 (expresses only pk 

antigen). This study also found that STX 2e binding to RBCs correlated with expression of 

the Gb4/P antigen.43 Interestingly, the amount of toxin binding to RBCs may influence an 

individual's susceptibility to HUS. Two studies found that patients that developed HUS were 

likely to have lower levels of Gb3 on their RBCs than children undergoing routine 

venipuncture44 or patients with diarrhea caused by STEC that did not develop HUS.45 

In addition to binding to RBCs, STX has been shown to bind to platelets. Gb3 is 

expressed on platelets, RBCs, and endothelial cells.46 A more recent study has found that 

STX binds to platelet Gb3, and also binds to a newly discovered glycolipid, termed band 

0.03. The presence of this glycolipid was related to high expression of Gb3 and was thought 

to represent the structure IV3-0-Galactose a[l • 4] galactosylglobotetraosyl ceramide. 

Interestingly, this study also found that higher levels of Gb3 expression did not correlate with 

increased binding of STX, but suggested that increased toxin binding occurred on older 

platelets.47 Although platelets can bind toxin, it appears that STX 1 or STX 2 do not directly 

enhance aggregation of human adult platelets in vitro.48 

The major contributor to the lesions and clinical signs in HUS is thought to arise as a 

result shiga toxin damage to endothelial cells (EC). Much of the original literature 

examining the effect of STX on EC were done on human umbilical vein EC, aortic EC or 

other cells easily attained or cultured. However, it has become clear that endothelial cells 

from different locations have different properties and respond to stimuli differently.49·50 
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Similarly, it has been found that endothelial cells from different locations respond to shiga 

toxin differently. Umbilical vein EC were found to be less sensitive to shiga toxin than renal 

microvascular EC. This sensitivity was found to correlate to the amount of Gb3 found on 

these cells.51 Another paper compared endothelial cells from different locations from 

neonates and adults and noted that neonatal cells were more sensitive to shiga toxin than 

adult cells and the sensitivity correlated to the amount of Gb3 present on the cells. 52 

Interestingly, confluence of cell cultures and stage of the cell cycle has been shown to 

influence susceptibility of vero cells to shiga toxin without alteration of the Gb3 content. 53 It 

was shown that the maximum susceptibility to shiga toxin occurred around the Gl /S 

transition. 54 A variety of chemical agents, cytokines and lipopolysaccharide have been 

studied in their ability to increase endothelial cell sensitivity to shiga toxins. Sodium 

butyrate has been found to increase the shiga toxin sensitivity of endothelial cells from some, 

but not all, locations. 55•56 Lipopolysaccharide has been found to enhance shiga toxin damage 

to endothelial cells in some studies,57•58 while in other studies it did not promote enhanced 

endothelial cytotoxicity from shiga toxins.59 

An important proposed mechanism in the development of HUS is an imbalance of the 

coagulation system. Thrombin generation appears to be increased during HUS as evidenced 

by increased levels ofthrombin-antithrombin III complex.60·61 Children with HUS have been 

found to have increased levels of fibrin degradation products and d-dimers, suggesting 

enhanced activity of the fibrinolytic pathway.60•61 •62 In addition, plasminogen activator 

inhibitor (P AI-1) levels were found to be significantly elevated in HUS patients. 60•62•63 

During an in vitro study, it was found that renal endothelial cells responded to shiga toxin 

exposure more profoundly than umbilical endothelial cells by decreasing production of 
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urinary plasminogen activator (uPA). This decrease in uPA was suggested to promote 

overall reduction in renal fibrinolysis and promotion of renal thrombosis during HUS.64 

Recently, a serine protease produced by some E. coli O157:H7 isolates has been described. 

This protein, named EspP, has been shown to cleave human coagulation factor V. 16 It is 

unclear at this time how important EspP is in the pathogenesis of HUS. 

Another component of the coagulation pathway that has been studied with respect to 

the pathogenesis of HUS is abnormalities ofvon Willebrand factor (vWF) release. von 

Willebrand factor is a multimeric protein that is produced exclusively by megakaryocytes 

and EC, where it is stored in granules called Weibel-Palade bodies. Its primary function is to 

stabilize platelet adhesion to subendothelium after vascular damage; it also prolongs the half

life of coagulation factor VIII in plasma. von Willebrand factor is found in the plasma in a 

variety of sizes, the largest of which are the most hemostatically active. 65 Most children with 

HUS have been found to have elevated levels ofvWF in their plasma at the time of 

admission.62•66 Examination of the vWF multimer sizes reveals that these patients usually 

have decreased amounts of the largest multimer sizes, although occasional patients have 

unusually large vWF multimers in their plasma.66•67 It has been postulated that disappearance 

of the unusually large vWF from plasma is a result of consumption of those multimers in the 

thrombi that occur in the renal microvasculature.67 Incubation of human umbilical vein EC 

with STX for 30 minutes was found to increase the amount ofvWF and unusually large vWF 

in the culture supernatant. 68 In contrast to a similar clinical syndrome, thrombotic 

thrombocytopenic purpura (TTP), patients with HUS have normal levels of plasma vWF 

1 • 69 c eavmg protease. 



www.manaraa.com

10 

In addition to effects on EC, the effect of shiga toxins on leukocytes may be 

important in the pathogenesis of HUS. Exposure to shiga toxin has been shown to enhance 

production of IL-I, TNFu and other cytokines from human monocytes in vitro.70 In addition 

to effects on monocytes, STX effects neutrophils as well. Patients with HUS have been 

found to have increased adhesion of neutrophils to EC as compared to controls. 71 An in vitro 

study also found enhanced adhesion of neutrophils to human umbilical vein EC after 

incubation with STX-1. This adhesion was blocked with antibodies to E-selectin, 

intercellular adhesion molecule- I, and vascular cell adhesion molecule- I. 72 

Thesis Organization 

The objectives of this study were to determine a portion of the mechanisms 

underlying the fragmentation and damage that occurs to RBCs during HUS. This thesis will 

be divided into two papers that are to be submitted for publication. The first paper is entitled 

"Use of Computerized Image Analysis to Assess Bovine Erythrocyte Morphology" and was 

designed to examine the usefulness of a computerized image analysis in determining the 

amount ofRBC fragmentation that occurred in an animal model of E. coli 0157:H7 

infection. The second paper is entitled "Direct and Interactive Effects of Shiga Toxin-I on 

Red Blood Cells and Endothelial Cells." This study examined the direct effects of STX I on 

human RB Cs using osmotic fragility and electrophoresis of RBC membrane proteins. In 

addition, this project examined the interactive effects of STX I on endothelial cells and 

RB Cs. The final portion of this thesis is arranged as appendices and details the 

electrophoresis data obtained for the second publication. The second appendix shows the 
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results of a two-dimensional electrophoresis project on RBCs. The final appendix is the 

protocols used for the various experiments of this thesis. 
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USE OF COMPUTERIZED IMAGE ANALYSIS TO ASSESS BOVINE 
ERYTHROCYTE MORPHOLOGY 

A paper to be submitted to Veterinary Clinical Pathology 

Denise Wunn, Claire Andreasen, Margaret Carter, Mark Ackermann, Evelyn Dean-Nystrom 

Abstract 

Marked poikilocytosis, including schistocytes and irregularly spiculated acanthocytes, were 

found in red blood cells (RBC) from calves experimentally infected with Escherichia coli 

O157:H7. A method was needed to improve evaluation ofRBC morphology and to quantify 

the degree of poikilocytosis that occurred in 4 calves prior to infection and 10 calves after 

infection. The calves ranged from newborn to 4 months of age. Data was collected using a 

digital imaging system (Visilog, Noesis Vision, Inc). Area and crofton perimeter were 

measured and used to calculate a shape factor for each RBC. The shape factor was 

determined to be significantly different from 1.00 (perfectly round) at > 1.24. The percentage 

of cells with a shape factor of> 1.24 was compared between infected and control calves. For 

visual assessment, 1000 RBC per calf were evaluated independently and placed in one of 

seven shape categories. No significant differences were found between image analysis and 

manual scores, either prior to infection or after infection. No significant differences were 

found between age groups. Crenation of RBC caused the greatest discordance between the 

visual assessment and the image analysis scores. Samples with a higher percentage of 

crenation often resulted in a higher percentage of cells with a shape factor > 1.24, rather than 

samples with 3+ or 4+ poikilocytosis (acanthocytes and schistocytes). The image analysis 

system was sensitive to the cumulative effects of shape changes, such as crenation, that may 
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occur as an artifact, and may not specifically detect diagnostically significant RBC shape 

changes, such as acanthocytes or schistocytes. 

Introduction 

The pathogenesis of Escherichia coli 0157:H7 infection and associated hemolytic 

uremic syndrome (HUS), has been studied in calves and other animal models. 1 During our 

study of neonatal calves experimentally infected with E. coli 0157:H7, it was noted that they 

had increased numbers of RBC shape changes such as acanthocytes or schistocytes when 

compared with normal calves. Although many pathogenic mechanisms of HUS have been 

studied extensively, the pathogenesis of the classically described RBC fragmentation remains 

unclear. The proposed mechanism is that the RBC membrane is damaged as they flow 

through platelet thrombi in the microvasculature. 2'3 It also has been proposed that RBC may 

be injured directly by bacterial toxins.4 

The degree of poikilocytosis in blood smears has traditionally been graded on a 

subjective scale of 1 + to 4+. 5 Poikilocytes can also be quantified by manually counting a 

given number ofRBC and noting the percentages of cells with a given morphologic 

abnormality. However, these methods can be subjective and time consuming. Computerized 

image analysis offers a means of detecting and more objectively quantifying shape changes 

that might occur in RBC. Image analysis ofRBC shapes has been described in several 

human medical publications, particularly in the area of sickle cell anemia.6,7,&,9,Jo, 

Although several different shape, size and color features of RBC can be measured 

using image analysis, one report found that a single "form factor" equation 

( {4•n•Area}+{Perimeter2}) was the sole factor needed to classify RBC as normal, abnormal 
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or sickle. 11 To our knowledge, there have been no reports utilizing image analysis in the 

study ofRBC shapes in domestic animals. The objective of this report is to compare, using 

both manual methods and computerized image analysis with a single shape factor equation, 

the numbers of poikilocytes in calves prior to and after infection with E. coli O157:H7. 

Materials and Methods 

Samples 

Samples were taken from 4 calves prior to infection and 10 calves after infection with 

E. coli O157:H7. Six of these were paired samples from colostrum-deprived neonates (less 

than 3 days of age); the remaining samples were taken from calves 4 months of age. Two 

neonatal calves were infected with a non-pathogenic E. coli to serve as a control. The 

remaining neonatal calves were infected with E. coli O157:H7, strain 933. Four-month-old 

calves that had been fasted 48 hours were inoculated orally with 1010 colony forming units of 

E. coli O157:H7 strain 5570. Samples were collected from calves at 2 days post infection 

(neonates) or at 4 days post infection (weanlings) immediately prior to euthanasia and 

necropsy. Blood was collected into potassium EDTA and analyzed within 3 hours of 

collection. Complete blood counts with plasma protein, fibrinogen and manual differentials 

were performed on all calves. Blood smears were routinely prepared and stained with 

Wright's stain. 12 

Image Analysis Parameters 

The slides were examined using 1 000X magnification on a microscope fitted with a 

color video camera and attached computer hardware. 13 Images from 10 randomly selected 
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fields in the monolayer were captured using image analysis software (Visilog by Noesis 

Vision, Inc.) with a resolution limit of approximately 0.21 microns per pixel. Leukocytes 

and platelets were excluded from the image based on their blue staining characteristics. 

Images of incomplete RBC on the edge of the field also were discarded. The mean number 

of RBC analyzed was 596 per sample with the minimum number 368 and the maximum 

being 747 RBC per sample. Area and crofton perimeter were measured for each cell. Area 

is a geometric measurement that is determined by the number of pixels contained within 

given boundaries of an object. Crofton's perimeter formula is a means of calculating 

perimeter based on the lengths of lines that intercept the edge of a given object. A "shape 

factor" (SF) was calculated for each cell using the formula SF=( crofton perimeter2) + 

( 4•n•area). 14 Perfectly round objects have a SF of 1.00; linear objects have a SF approaching 

2.00. Previous analysis of three clinically healthy calves found that normally shaped RBC 

had a SF of less than 1.25. The percentage of RBC with SF equal or greater than 1.25 was 

determined for each calf. 

Manual Scoring of RBC Shapes 

Two investigators (DW & CA) independently scored the number and type of 

poikilocytes from each calf. 1000 RBC were counted and each RBC assigned into one of 7 

categories: discocyte, crenated, schistocyte, acanthocyte, keratocyte, dacryocyte and irregular 

poikilocyte. 15 The total number of poikilocytes from calves prior to infection with E. coli 

were compared to the number of poikilocytes after infection. Manual scores also were 

compared to the numbers of poikilocytes from image analysis. 
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Statistical Analysis 

Data was analyzed using a Student's T-test for parametric data or a Wilcoxon's Rank 

Sum Test for non-parametric data. P values less than 0.05 were considered significant. 

Results 

Hematology 

Neonatal calves had significantly higher plasma fibrinogen after infection as 

compared to before infection (p = 0.003, Fig 1). Calves infected with E. coli O157:H7 had 

significantly lower numbers of total white blood cells and mature neutrophils after infection 

as compared to before infection (p = 0.002 and p = 0.0001); however, calves receiving the 

non-pathogenic strain of E. coli also had significantly lower numbers of total leukocytes and 

mature neutrophils. The remaining hematologic data was not significantly different after 

infection as compared to before infection (Fig 2). 

Image Analysis and Manual Scoring 

The percentage of poikilocytes from image analysis was not significantly different in 

calves prior to infection with E. coli O157:H7 as compared to post infection (p = 0.39, Fig 3). 

Although there was a trend toward higher numbers of crenated RBC, schistocytes, and 

acanthocytes after infection, the large amount of variation between calves did not allow for a 

statistical significance. There were no statistically significant differences in image analysis 

scores between neonatal and 4 month old calves. There were no statistically significant 

differences in any manually scored shape category prior to infection as compared to post 

infection (Fig 4 ). There were also no differences in manual RBC scores between the 
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neonatal and weaned groups. The samples with the highest percentage of poikilocytes given 

by image analysis scores had the highest numbers of crenated cells by manual scoring 

methods. Shape factor did not correlate well with any one shape category, although the best 

correlation was with crenated cells (r = 0.65). 

Discussion 

The significantly increased fibrinogen and decreased number of total white blood 

cells and mature neutrophils after E.coli 0157:H7 infection are consistent with acute 

inflammation and increased tissue demand for neutrophils. These are common findings in 

calves with diarrhea due to a number of different etiologic causes and should not be 

considered specific for E.coli 0157:H7. While the neonatal calves developed colitis, they 

did not develop other signs or lesions consistent with HUS. It should be noted however, that 

HUS in children usually occurs 2 to 14 days after the onset of diarrhea. 16 It is possible that in 

euthanizing these calves on days 2 or 4 post infection, the classic hemolytic uremic syndrome 

was not allowed time to develop. 

While there was a higher mean shape factor score from image analysis in calves after 

infection with E. coli 0157:H7, the trend was not statistically significant. It is also noted that 

calves tended to have higher numbers of crenated RBC after infection ( although not 

statistically significant). The reason for the apparent increase in crenation is not clear, 

although it is possible that switching of hemoglobin types during the neonatal through 

weaning periods has influenced these results. Previous reports have noted that younger 

calves are more likely to have poikilocytosis than those greater than six weeks of age. 17 

Calves have embryonic, fetal and adult types of hemoglobin at birth and gradually change to 
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production of only adult hemoglobin by 6 to 7 months of age.18 In cattle, the switch from 

fetal to adult hemoglobin is associated with a structural change in the red cell that is 

correlated with a decrease in mean corpuscular volume. 19 Other reports have proposed that 

iron deficiency or abnormalities in hemoglobin expression may account for the high number 

of poikilocytes in calves.20 

Our goal in this study was to evaluate computerized image analysis and a single shape 

factor calculation as an objective, quantitative method of detecting schistocytes and 

fragmented RBC in blood smears from calves infected with E. coli O157:H7. In our study, 

the shape factor correlated most strongly with crenated RBC. Use of image analysis in 

species and age groups that tend to have crenated RBC may lower the sensitivity of detecting 

more diagnostic shape changes, such as schistocytes. Image analysis and single shape factor 

calculation of RBC may be more useful in other species or in mature animals less prone to 

artifactual crenation of their RBC. Perhaps the relative resistance of human RBC to 

crenation allowed previous investigators to use a single shape factor calculation to 

successfully identify sickled red cells. 11 Other researchers have determined up to ten shape 

and color parameters for each red cell and devised elaborate graphs and tables to arrive at an 

erythrocyte differential using a computerized image analysis system. 8 In the future, use of 

additional image analysis shape parameters might prove helpful in identifying schistocytes or 

fragmented RBC and differentiating them from crenated cells in veterinary species. 
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Fig 1-Mean fibrinogen levels in neonatal calves (n=2) prior to and after 

infection with a non-pathogenic strain of E. coli (white bars). Standard 

error of post infection control calves is zero. Grey bars show fibrinogen 

levels in neonatal calves (n=4) prior to and after infection with E. coli 

O157:H7. Significantly different from controls at p = 0.003. 
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Fig 2-Leukogram data showing total mean white blood cells, segmented/mature 

neutrophils, lymphocytes and band/immature neutrophils. White bars are 

from neonatal calves (n=2) prior to infection with a non-pathogenic strain of 

E. coli. Dashed bars are after infection with non-pathogenic E. coli. Grey 

bars are from neonatal calves (n=4) prior to infection with E. coli 0157:H7. 

Black bars show calves after infection with E. coli 0157:H7. Total WBC and 

segmented neutrophils were significantly different in neonatal calves after 

infection with E.coli 0157:H7, however, neonatal calves with non-pathogenic 

E. coli were also significantly different. 
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Image Analysis Results 
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Fig 3-Percentage of poikilocytes as given by computerized image analysis in 

calves pre-infection (n=4) and post-infection (n=IO) with E. coli O157:H7. 

Results not statistically significant (p = 0.46). 
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Manual Red Cell Scoring Results 
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Fig 4- Mean numbers of crenated RBC (top) and other shape changes (bottom) 

given by manual scoring in calves prior to and after infection with E. coli 

O157:H7. No results were statistically significant at the p=0.05 level. 
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DIRECT AND INTERACTIVE EFFECTS OF SHIGA TOXIN-I ON RED 
BLOOD CELLS AND ENDOTHELIAL CELLS 

A paper to be submitted to Journal of Infectious Diseases 

Denise Wunn, Claire Andreasen, Ingrid Pruimboom, Brad Fenwick 

Abstract 

Fragmented red blood cells (RBCs) are one of the hallmark features of hemolytic 

uremic syndrome, a disease that develops after infection with Escherichia coli O157:H7 and 

exposure to its Shiga-like toxin (STX). This study examined the direct effects of STX on 

RBCs and their interaction with cultured endothelial cells. Human RBCs were incubated 

with STX for 30 and 60 mins and 24 hrs. No significant changes were seen in RBC 

morphology as determined by light microscopy or osmotic fragility. Using a gravity 

adherence assay, no increase in RBC adhesion to STX incubated endothelial cells was 

observed. Direct exposure to STX did not alter the RBC membrane proteins visualized using 

gel electrophoresis. Similarly, RBCs incubated with STX exposed endothelial cells did not 

have altered membrane proteins. The mechanism of RBC fragmentation is likely the result 

of indirect effects of STX or combinations of toxins produced by E.coli O157:H7. 

Introduction 

Escherichia coli O157:H7 infects more than 73,000 people each year and causes 

approximately 65 deaths; mostly in children that develop hemolytic uremic syndrome 

(HUS). 1 In 1955, Comad von Gasser reported the first cases of HUS and described the 

hallmark features of fragmented red blood cells (RB Cs), acute renal failure and 
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thrombocytopenia. 2 The development of HUS has since been associated with infection by E. 

coli O157:H7 and the Shiga-like toxin(STX) it produces.3 

The fragmentation ofRBCs has been attributed to damage caused during circulation 

past microvascular thrombi that are formed in response to STX exposure. However, previous 

studies ofRBC shape changes in sheep RBCs noted that attachment of an E. coli a

hemolysin induced rapid shape changes followed by hemolysis.4 In other diseases with RBC 

fragmentation (sickle cell anemia), RBCs have been shown to adhere to cultured endothelial 

cells. 5•6 To date, there have been no studies examining the direct effects of STX on the 

morphology ofRBCs. Further, there have been no studies exploring the adhesion ofRBCs to 

endothelial cells after STX exposure. The objective of this study was to test for direct effect 

of STX on RBCs by measuring the degree of RBC fragmentation and membrane protein 

alteration. In addition, the interactive effects of RB Cs and endothelial cells were studied. 

Materials and Methods 

Direct effects of STX on REC morphology. 

Whole blood was collected from a human volunteer into potassium EDTA and 

lithium heparin tubes for duplicate trials. The samples were divided into two with one 

sample being retained as whole blood a~d the cells in the remaining sample prepared as 

washed RBCs. Washed RBCs were prepared by centrifuging; discarding the plasma and 

washing the RBCs three times with phosphate buffered saline (PBS). Washed RBCs were 

resuspended in PBS to a concentration of ~35%. Two µg Shiga-like toxin I (STX, provided 

by Dr. Brad Fenwick, Kansas State University) were added to tubes containing 250 µl of 

whole blood or washed RBCs and were incubated at 37°C for 30 and 60 minutes and 24 
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hours. After incubation, blood smears were made, stained with Wright ' s Giemsa and 

observed microscopically for changes in erythrocyte morphology as compared to smears 

made prior to incubation. 

RBC osmotic fragility. 

The osmotic fragility assay was done using the method described by Schalm. 7 A 1 % 

solution of saline (pH 7.4) was diluted in 15 tubes with incrementally increasing amounts of 

distilled water resulting in 0.85% to 0.10% NaCl solutions. A final tube contained only 

distilled water. Ten µl of either whole blood or washed RBCs incubated with STX at 37°C 

for 30 and 60 minutes and 24 hours were added to each tube in the series and incubated at 

22°C for 30 minutes. A sample of blood incubated at 37°C for the same time without STX 

served as a negative control. After incubation, the tubes were centrifuged and the 

spectrophotometeric absorbance of the supernatant from each tube was recorded at 540 nm. 

The results were plotted as percent hemolysis per concentration of saline. The concentration 

at which 50% hemolysis occurred was determined using probit analysis. This experiment 

was performed twice. 

STX effects on endothelial cells. 

The effect of STX on endothelial cells from different locations was studied on 

commercially obtained (Clonetics, Inc., Walkersville, MD) human umbilical vein endothelial 

cells, human renal arterial and human dermal rnicrovascular endothelial cells during three 

replicate trials. Confluent monolayers of endothelial cells were incubated for 24 hours in 

chamber slides. The chambers contained: 1.) culture media (EGM-2MV®, Clonetics, Inc., 

Walkersville, MD) and 1 µg STX, 2.) 1 µg STX; and 10 µg E.coli lipopolysaccharide (LPS) 

(Sigma Chemical Co., St. Louis, MO) in culture media, 3.) 10 µg LPS in culture media and 
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4.) media only (negative control). Cytotoxicity was subjectively evaluated by observing the 

numbers of detached cells. Binding of STX was confirmed using immunofluorescence. 

After incubation with culture media or toxin, cells were washed, the chamber removed and 

incubated with polyclonal mouse anti STX-I antibody (provided by Dr. James Samuel, Texas 

A&M University) for 30 minutes at 37°C. The cells were then washed, fixed in 4°C 

methanol and air dried. They were then incubated with fluorescein labeled mouse anti-IgG 

for 2 hours in the dark at 22°C. The slides were covered with glycerol mounting media that 

contained propidium iodide (VectaShield®, Vector Laboratories, Burlingame, CA) and 

viewed with ultraviolet microscopy. 

REC/endothelial cell adhesion assay. 

The method of determining RBC/endothelial adherence was adapted from a published 

assay6 and replicated four times. Human dermal microvascular endothelial cells from 

neonates were grown to confluence on chamber slides. Cell monolayers were exposed to 

media that contained 1 µg STX or 1 µg STX and 10 µg LPS for 24 hours at 37°C. After 

incubation, media containing STX was removed and 1.5 ml whole blood or washed RBCs 

(see above) were added to the chamber and the slide rocked for 30 minutes at 37°C. The 

chamber was then filled with PBS and inverted for 20 minutes at 22°C. The chamber was 

removed; the slide dipped once in PBS, air-dried and the cells stained with a modified 

Wright's stain. The slide was observed microscopically and the numbers of adherent RBCs 

noted. 

RBC membrane protein electrophoresis. 

RBC membrane proteins were analyzed using the method described by Barker. 8 Five 

mls of whole blood was collected for four replicate experiments from a volunteer into lithium 
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heparin, and divided into three samples. One 2.5 ml aliquot was maintained as a control, 

while the other aliquots were incubated with 1 µg STX for 1 and 3 hours at 37°C. A separate 

RBC sample was incubated for 3 hours with human microvascular endothelial cells that had 

been exposed to STX for the previous 24 hours. All RBC samples were then processed for 

RBC membrane protein electrophoresis. The whole blood was centrifuged; the plasma and 

huffy coat removed and the RBCs washed 6 times with PBS (pH 7.4), removing residual 

huffy coat after each wash. The cells were lysed with 50 mls of 20 mM Tris (pH 7.6) at 4°C 

and centrifuged at 30,000 g at 4°C for 30 minutes. The supernatant was removed and the 

membranes washed and centrifuged until the supernatant was clear. Residual leukocytes and 

platelets appeared as white pellets and were removed with cotton-tipped applicators. After 

preparation, RBC membranes were resuspended in the Tris solution, standardized by 

measuring absorbance at 540 nm, aliquoted and frozen at -70°C until use. RBC membranes 

were suspended in equal volumes of sample buffer (0.0625 M Tris-HCl, pH 6.8, 8M urea, 

5% SDS, 5% 2-mercaptoethanol, 10% glycerol & 0.0125% bromophenol blue). 

Electrophoresis was carried out using 10 well, 12% polyacrylamide 10 X 10 cm gels in 

Tris/glycine/SDS buffer (Bio-Rad Co., Hercules, CA). Gels were run at 100 V for 1 hour 20 

minutes. A standard protein solution was used in every gel (high molecular weight standard 

mixture, Sigma Chemical Co. , St. Louis, MO). Gels were stained using 0.5% Coomassie 

Brilliant Blue, 45% methanol and 10% glacial acetic acid for 1 hour at 22°C. They were then 

destained using several changes of 45% methanol and 10% acetic acid solution and constant 

gentle agitation. Gels were rinsed with water and photographed using a gel imaging 

computer program (GelExpert®, Nucleotech, San Mateo, CA). 
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Results 

Direct effects of STX on RBC morphology. 

After incubation with STX, RBCs from whole blood and washed RBCs did not 

exhibit increased fragmentation or poikilocytosis as compared to whole blood and washed 

RBCs not incubated with toxin. 

RBC osmotic fragility. 

There was no change between cells that had been exposed to STX as compared to 

negative controls (Fig 1 ). These findings are similar to clinical studies that observe no 

change in RBC osmotic fragility in HUS patients. 9 

STX effects on endothelial cells. 

Human umbilical vein endothelial cells showed no cytotoxic effects ( few detached 

cells) after incubation with 1 pg to 3 mg STX for 24 hours. Similarly, renal arterial 

endothelial cells exhibited no cytotoxic effects to 1 µg STX after 24 hours . Despite no 

cytotoxic effects, positive immunofluorescence deposition demonstrated that STX had 

attached to these cells. Human microvascular endothelial cells were strongly sensitive to the 

cytotoxic effects of STX and had subjectively increased amounts of immunofluorescence. 

Cells that had been incubated with STX exhibited ~ 75% cell death as compared to negative 

controls. Cells incubated with LPS alone did not demonstrate immunofluorescence. 

REC/endothelial cell adhesion assay. 

After incubation, the numbers of RB Cs adherent to endothelial cells were not 

significantly different from negative controls (p=0.68, Fig 2). 
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REC membrane protein electrophoresis. 

Electrophoresis revealed RBC membrane proteins were similar in type and 

concentration after exposure to STX for 1 and 3 hours (Fig 3). RBC membrane proteins that 

were exposed to STX-incubated endothelial cells were not different from control RBCs (Fig 

4). 

Discussion 

E. coli Shiga-like toxin 1 was not found to directly induce RBC fragmentation or 

changes in RBC membrane proteins. Similarly, RBCs incubated with STX exposed 

endothelial cells demonstrated no changes in their membrane proteins using SDS-PAGE. 

Other researchers have studied the direct effects of STX on cells other than RBCs. One 

recent study indicated Shiga toxins 1 and 2 do not directly enhance platelet aggregation.10 

There also was no change in RBC osmotic fragility after exposure to STX. This is in contrast 

to the a-hemolytic toxins that have been shown to insert into the membranes of RB Cs and 

form pores that allow leakage of intracellular ions. This contributes to RBC morphologic 

changes5 and eventual RBC rupture due to colloidal osmotic shock. 11 While fragmented 

RBCs and thrombocytopenia have been described as two hallmark features of HUS, STX, the 

toxin most associated with development of the disease appears to contribute to these findings 

through indirect means. 

This study fails to detect any direct effect of STX on RBCs. Perhaps this is 

attributable to the mature RBC lacking much of the cellular organelles that are needed for 

processing and transport of the toxin. Shiga toxins bind to glycolipid receptors (globotriaosyl 
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ceramide, Gb3 or globotetraosyl ceramide Gb4) on the cell surface and are transported to the 

endosomes, golgi apparatus and eventually the endoplasmic reticulum. One report stated that 

disruption of the golgi apparatus or blocking of toxin entry into the golgi by low 

temperatures prevents Shiga intoxication of cells. 12 Lacking golgi apparatus may be an 

important protective mechanism for the mature RBC against intoxication with STX. RBCs 

have been shown to bind STX to Gb3 receptors on their surface. Interestingly, higher 

concentrations of STX binding to RBCs have been theorized to decrease the susceptibility of 

children to develop HUS.13 

As reported in prior publications, endothelial cells from different locations respond to 

STX quite differently. 14 Our study confirms that microvascular endothelial cells are more 

sensitive to STX than cells from larger caliber vessels. Previous reports indicate that the 

degree of sensitivity to STX is related to the amount of toxin binding. 15 Although not 

quantiatively studied, our results using an immunofluorescence assay parallel the published 

literature in noting that microvascular endothelial cells had subjectively increased toxin 

binding as compared to those cells from a large caliber location. 

Despite evidence of RBC/endothelial cell adhesion in other diseases, we report no 

enhanced RBC adhesion after endothelial cell exposure to STX. One possible explanation 

for these findings is that our endothelial cells had been incubated with STX for 24 hours and 

approximately 50% of the cells had become detached from the slide. Also, removal of the 

media from the STX incubated cells prior to addition ofRBCs may also have removed any 

adhesive proteins that may have been released by the endothelial cells into the media. One 

study found that von Willebrand factor release from sensitive endothelial cells correlated to 

the degree of cytotoxicity as soon as three hours after exposure to STX. 14 von Willebrand 
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factor has been shown to play an important role in the adhesion of RB Cs to endothelial cells 

during diseases such as sickle cell anemia. 5•6 

Although RBC fragmentation and hemolysis has been described since the first case 

reports of hemolytic uremic syndrome, there is relatively little published on the mechanisms 

of these changes. This study demonstrates that STX is likely not the direct cause of RBC 

fragmentation, or RBC membrane protein changes during hemolytic uremic syndrome. 

Additionally, we found no evidence ofRBC adhesion to endothelial cells after they had been 

exposed to STX. Continued studies are needed to define the mechanisms ofRBC 

fragmentation and their interaction with endothelial cells during the course of infection with 

Escherichia coli O157:H7. 
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RBC Adhesion to Endothelial Cells 
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Figure 2-Data from RBC/endothelial adhesion assay showing mean numbers of 

adherent RBCs per 500x field. Control endothelial cells were incubated with 

saline for 24 hours, treated endothelial cells were incubated with STX for 24 

hours. Results are not statistically significant (p=0.68). 



www.manaraa.com

Spectrin 

Actin 

GAPD 

STX 
3 hr 

STX 
1 hr 

Control 

48 

205,000 

116,000 

97,400 

66,000 

29,000 

I St~dMd I 

205,000 

116,000 

97,400 

66,000 

29,000 

St~dMd 

Figure 3-
Electrophoresis of 
RBC membrane 
proteins after 
incubation with STX 
for different times (left 
2 lanes) and no STX 
("control"), standard 
protein mixture in 
right lane 

Figure 4-
Electrophoresis of RBC 
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lane) and after 
incubation with 
confluent endothelial 
cells ( center lane). 
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mixture in right lane. 
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GENERAL CONCLUSIONS 

Discussion 

Previous work in humans with sickle cell anemia found that a single shape factor was 

sufficient to identify sickled RBCs. 1 In our studies, image analysis with single shape factor 

calculation was inadequate to separate fragmented RBCs from those that were crenated. 

Perhaps in future studies, additional shape factor parameters could be used to assist 

separation of schistocytes from crenated cells. Other image analysis parameters that may be 

useful include measures of RBC spicularity or elongation. Other studies using image 

analysis of human RBCs have used a number of image analysis parameters and calculations, 

often combined with various charts and graphs to classify RBC abnormalities.2•3 The 

potential difficulty with using additional analysis parameters is the amount of time to process 

the data and perform additional calculations. 

In order to quantify the amount of RBC fragmentation, computerized image analysis 

with a single shape factor equation was used to compare RBCs in calves before and after 

infection with E. coli 0157:H7. Crenation is a particular problem in the calf, likely a result 

of switching from fetal hemoglobin to adult hemoglobin that occurs during the neonatal 

period.4 Use of image analysis in this species during the neonatal period may prove 

unrewarding. Studies using image analysis ofRBCs from other veterinary species with more 

stable RBC shapes, such as the dog, may be more fruitful. In addition, while the calf model 

may be useful for studying intestinal colonization, it is unlikely that the calf will be a useful 

model for the systemic effects of E. coli 0157:H7 infections. 

Calves infected with E. coli O 157 :H7 did demonstrate significant changes in other 

components of the complete blood count. The numbers of total leukocytes and mature 
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neutrophils was significantly decreased during infection with E. coli O157:H7. In addition, 

the fibrinogen level in plasma was significantly increased. These findings are consistent with 

inflammation and enhanced tissue demand for neutrophils. While these findings are helpful 

in further understanding how the calfresponds to infection with E. coli O157:H7, 

hyperfibrinogenemia and neutropenia are common findings in a variety of bovine 

inflammatory diseases and not specific for E. coli colitis. 

Direct effects of STX on RBCs have not been reported in the literature. Our studies 

found that incubation of human RBCs with STX does not cause any change in the RBC 

morphology or osmotic fragility after 30 minutes, 60 minutes or 24 hours. Unlike 

hemolysins, STX does not form pores in RBC membranes. The mechanism of intoxication 

by STX involves cellular uptake and eventual transport of the toxin to the golgi apparatus 

and the endoplasmic reticulum. STX damages cells by inhibiting protein synthesis. 5 

Previous studies have shown that disruption of the golgi apparatus with the drug brefeldin A 

will prevent cellular intoxication with STX.6 Given that mature RBCs lack cellular 

organelles such as golgi or the endoplasmic reticulum, it is not surprising that these cells are 

resistant to the direct effects of STX. Future studies on the pathogenesis of RBC 

fragmentation could focus on the effects of toxins HlyA or Ehx that insert pores into RBC 

membranes and do not rely on organelles that RB Cs lack. 7 

The interactive effects of STX on EC and RBC were studied using a gravity 

adherence assay. While performing this assay, it was observed that umbilical vein EC and 

even renal arterial EC were much more resistant to the effects of STX I than were 

microvascular EC. These findings are similar to those previously published. s,9 After EC 

incubation with STX, there was no increase in RBC binding to cultured cell monolayers. 
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These results were disappointing as RBC adherence to EC has been shown in several reports 

to be involved in the pathogenesis of vaso-occlusive events of sickle cell anemia patients. 10•11 

Interestingly, one proposed mechanism of these adhesive events between sickle RBCs and 

endothelium was shown to involve unusually large multimers ofvWF. 12 Differences in our 

study and the former that may bear consideration for future research is the use of different 

adhesion assays. Our study utilized a gravity flow assay while several studies in this area 

used a physiologic flow chamber to study RBC/EC adhesion. In addition, several sickle cell 

anemia studies used cells from sickle cell patients, many of whom had a reticulocytosis at the 

time of sampling. Our study utilized blood from healthy human volunteers with no evidence 

of reticulocytosis. 
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APPENDIX A: 

RBC MEMBRANE PROTEIN ONE-DIMENSIONAL 

ELECTROPHORESIS DATA 

RBC Membrane Gel, 6-17-99 
Control STX 1 hr STX 3 hr 

Band %Area Position ¾Area Position %Area Position 
1 12.68 59 16.65 67 22.07 68 
2 15.73 67 15.70 74 2.56 77 
3 7.31 82 1.32 85 4.52 85 
4 8.81 105 15.42 106 14.37 104 
5 6.61 119 6.76 121 6.18 118 
6 3.43 134 3.72 137 3.21 134 
7 6.26 166 6.37 168 6.53 166 
8 9.62 191 6.35 192 5.98 190 
9 2.92 220 4.82 221 4.57 220 

10 1.90 236 1.04 238 2.80 236 
11 3.28 274 4.39 274 4.47 274 
12 21.45 383 17.44 382 22.73 385 

RBC Membrane Gel, 6-15-99 
Control STX 1 hr STX 3 hr 

Band %Area Position %Area Position %Area Position 

1 16.11 77 18.80 76 13.95 71 
2 14.20 84 14.00 84 10.32 81 
3 3.27 94 3.01 93 1.76 91 
4 13.69 119 15.62 113 11.68 116 
5 4.92 131 0.49 122 5.25 128 
6 2.61 146 1.72 141 3.82 143 
7 3.97 177 4.27 175 3.35 174 
8 4.14 200 3.54 198 3.78 196 
9 3.24 229 3.01 226 3.63 224 

10 3.38 241 2.72 240 3.19 239 
11 5.58 277 6.02 276 5.44 274 
12 24.90 377 22.82 377 33.84 379 
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APPENDIXB: 

TWO-DIMENSIONAL ELECTROPHORESIS OF RED BLOOD CELLS 

In order to more fully examine the effects of Shiga-like toxin 1 (STX) on red blood 

cell (RBC) proteins, a two-dimensional electrophoresis (2D ELP) study was carried out. 

RBC membrane proteins as previously prepared (see RBC membrane protein electrophoresis 

protocol) and whole RB Cs were examined using 2D ELP. A 2D ELP web site 

(http://www.expasy.ch/) sponsored by the ExPASy (Expert Protein Analysis System) 

proteomics server of the Swiss Institute of Bioinformatics was found and offered a great deal 

of information about 2D ELP including references, photographs etc. In addition, protocols 

from the Electrophoresis Laboratory at the Geneva University Hospitals can be found at: 

http://www.expasy.ch/ ch2d/protocols/ 

The whole blood protocols were adapted from methods published by Golaz. 1•2 Blood 

was drawn from healthy human volunteers after obtaining informed consent. 5 mls whole 

blood was drawn into EDTA and centrifuged at 3500 rpm for 10 mins. The plasma and huffy 

coat was removed with a transfer pipette. The remaining RBCs were washed 4 times with 

phosphate buffered saline (pH 7.4 ). Care was taken to remove any residual huffy coat after 

each wash. Seven µl of packed RBCs were then added to 483 µl rehydration buffer. 5 µl of 

this solution was then added to 120 µl of rehydration buffer and the entire amount then added 

to the first dimension separation gel. The first dimension gels used were Immobiline Dry 

strips pH 3 - 10 linear, produced by Amersham Pharmacia. Some of our biggest problems 

were in using the proper amount of protein so as not to overload the gel and yet still get good 
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protein visualization. After several hours of rehydration and separation in the first 

dimension, the gels were removed and the placed in SDS equilibration buffer in order to 

quench the charge and allow separation based on molecular weight. If the gel was not to be 

run in the second dimension immediately, it was placed in a new 15 ml centrifuge tube and 

frozen at -80°C. After incubation for 15 minutes, IEF strips were placed in the single well of 

a 10 cm ReadyGel (BioRad) and sealed in place using liquid agarose solution. After 

polymerization, the gel was covered with a Tris SDS buffer and run in the second dimension 

at 100V for 1 hour and 30 minutes. No molecular weight standards were used. When the 

dye front had reached the bottom of the gel, current was removed and the gel removed from 

the apparatus. The gel was notched in the upper right comer and placed in modified Neuhoff 

staining solution overnight. After staining overnight, the gels were destained using several 

changes of 1 % acetic acid solution with gentle agitation. After maximum visualization was 

produced, the gels were documented using the Nucleotech gel documentation system. (For 

COMPLETE protocol information, see the 23-page protocol composed by Jack Gallup, V 

PTH, spring 2000.) 

No detectable differences were found between whole RBCs or RBC membranes 

incubated with STX as compared to those incubated with saline ( control). These results were 

similar to those determined by one dimensional SDS-PAGE. These results are consistent 

with the mechanism of action of STX. Because RBCs lack cellular organelles necessary for 

cell intoxication (namely the golgi apparatus and the endoplasmic reticulum) they are likely 

protected from the direct effects of STX. 
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Figure 1: Two-dimensional electrophoresis (2D ELP) of control RBC 

membranes. 
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Figure 2: 2D ELP ofRBC membranes after incubation with STX for 1 hour. 
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Figure 3: 2D ELP ofRBC membranes after incubation with STX for 3 hours. 
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APPENDIXC: 

PROTOCOLS 

Erythrocyte Osmotic Fragility Protocol 
(Reference: Schalm 's Veterinary Hematology, 4th ed. (1986) pp 69-71) 

Materials Needed: 
5 ml pipetteman and 3 tips 
20 µl pipetteman and 1 tip per assay 
3 ml tubes (16 per assay) 
NaCl stock solution 
Ultrapure H2O 
50 ml centrifuge tubes (2) 
Spectrophotometer cuvettes (17) 

NaCl Stock Solution: 
90 g NaCl 
13.7 g Na2HPO4 
1.9 g NaH2PO4 
1 L Ultrapure H2O 
Adjust pH to 7.4 
Solution is stable for months 

1. Prepare 1 % NaCl solution: Fill 50 ml centrifuge tube with 45 mls ultrapure H2O. Using 
pipetteman, add 5 ml NaCl stock solution and mix. (50 mls 1 % NaCl will be enough for 
two assays. Make fresh 1 % solution if previous solution is older than two days.) 

2. Have 50 mls ofultrapure H2O available. 

3. Using 5 ml pipetteman, prepare serial dilutions of saline in tubes labeled 1 - 16 using 
following chart (Use one tip for 1 % NaCl and one for H2O): 

Tube# 1 % NaCl (mis) H20 (mis) Tube# 

1 2.125 0.375 1 
2 2.000 0.500 2 
3 1.875 0.625 3 
4 1.750 0.750 4 
5 1.625 0.875 5 
6 1.500 1.000 6 
7 1.375 1.125 7 
8 1.250 1.250 8 
9 1.125 1.375 9 

10 1.000 1.500 10 
11 0.875 1.625 11 
12 0.750 1.750 12 
13 0.625 1.875 13 
14 0.500 2.000 14 
15 0.250 2.250 15 
16 0.000 2.500 16 
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4. Tum on spectrophotometer and printer. Lamps must warm up for 30 mins. 

5. Using 20 µl pipetteman, add 10 µl heparinized, well mixed whole blood to each tube. BE 
SURE TO WIPE THE TIP WITH A KIMWIPE BEFORE PLACING IN ITS SALINE 
TUBE! 

6. Vortex each tube until cells are suspended and incubate at room temperature for 30 
minutes. During incubation, locate and label 16 spectrophotometer cuvettes. Bring up 
"Absorbance/Transmittance" on spectrophotometer. Then load "osmotic fragility" 
program (Wavelength should be set at 540nm). On right side of screen, enter owner of 
calf, calf#, age, date, pre or post-innoculation. Fill extra cuvette with ultrapure H20 for 
reference. Wait until lamps have been on for at least 30 mins before collecting reference. 

7. Centrifuge all tubes at 2,000 rpm for 7 mins. While centrifuge is going, run reference by 
putting H20 cuvette in position 1 and run "collect reference." 

8. Without disturbing the cell button (if there is one), transfer supernatant from tube to its 
corresponding cuvette and place in cuvette holder in spectrophotometer (holds 8 samples 
at a time). Make sure that sample position is "1" then move down to auto run, enter 8 
and press return. Spectrophotometer should automatically start reading each sample. 
After the first 8 samples have run, put in the next 8 samples, make sure that the sample . 
position is "l" and then highlight "Auto Run." 

(Note: Supematants in the later tubes should be red, while supematants in early numbered 
tubes should be clear.) 

9. After all 16 samples have been read, insert paper in the printer and highlight "print 
screen" and push return. Print 3 copies. (Try to keep the spectrophotometer readings as 
close to the top of the page as possible.) 

10. Put all cuvetttes and tubes in Biohazard Waste. Tum off spectrophotometer, cover, and 
clean up. 
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Protocol For Human RBC Responses To E. Coli Toxins 

REC Preparation 
1. Obtain human blood drawn by antecubital venipuncture into 3 ml EDTA and 3 ml lithium 

heparin tubes. Blood will be drawn by medical technologists in Clinical Pathology lab 
after signed, informed consent is obtained. 

2. Tubes will be centrifuged at 3500 rpm for 5 mins and the plasma and huffy coats 
removed and disposed of. 

3. RB Cs will be washed three times in phosphate buffered saline. After washing, cells will 
be resuspended in PBS at a hematocrit of25 - 30%. 

4. 0.5 ml of cell suspension from both EDTA and heparin will be aliquoted into 4 12 X 75 
mm tubes. 

Toxin Preparation 

1. Dilute 100 µgs SLT I with 100 µl PBS. Separate into 5 µl aliquots and freeze. 

2. Dilute 1 µl of diluted toxin 1 :4 with PBS to be used for 0.25 and 0.5 µgs assays. 

REC/Toxin Assay 

1. Add 0.25, 0.5, and 1 µgs of toxin to 0.5 ml of washed RBC suspension from both EDTA 
and heparinized samples. Vortex briefly to mix and incubate at 37°C for 30 mins. 

2. For controls, PBS with no toxin will be incubated with washed RBC suspension (from 
EDTA and heparin) for 30 & 60 mins and at 24 hrs. at 37°C. 

3. After incubation, a blood smear will be made from each tube and will be stained with 
Wright's stain and examined with a light microscope. 

4. A wet mount ofRBCs will also be made and examined with light microscopy. 

5. Perform osmotic fragility after completion of incubation. 
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Protocol for RBC membrane protein preparation for SDS-PAGE 
(Reference: Barker RN Electrophoretic analysis of erythrocyte membrane proteins and 
glycoproteins from different species. Comp Hematol Int 1:155-160, 1991.) 

1. Samples were drawn into lithium heparin, sodium citrate has also been described as 
common anticoagulant 

2. Whole blood was centrifuged for 10 mins at 3,500 rpm; the plasma and huffy coat 
removed (be aggressive in removing the huffy coat now, it will save time later) 

3. Wash RBCs 6 times with PBS (pH 7.4), removing any residual huffy coat after each 
wash. Each wash consisted of adding 5 - 10 ml PBS to a tube containing ~2 ml RBCs, & 
mixing thoroughly. Centrifuge at 1,000 rpm for 1 - 2 mins Gust enough to get a clear 
supernatant). Removed the supernatant and residual huffy coat and repeat. 

4. RBCs lysed with 10 volumes of ice cold 20 mM Tris (pH 7.6) per one volume washed 
RBCs 

5. Centrifuge at 30,000 rpm at 4°C for 30 mins. 

6. The supernatant was removed and the membranes washed and centrifuged (as in step 
above) with the Tris solution until the supernatant was clear (usually about three times). 
Residual leukocytes and platelets appeared as white cell buttons and were removed with 
cotton-tipped applicators. 

7. After preparation, RBC membranes were resuspended in the 20 mM Tris solution Gust 
enough to get them all in suspension). 

8. Preparations ofRBC membranes were standardized by measuring absorbance at 540 nm 
and adding 20 mM Tris. RBC membrane solutions were aliquoted and frozen at - 70°C 
until use. 
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Cell Culture Protocols 

Media Preparation 

Clonetics Endothelial Cell Growth Medium BulletKit (EGM) 
Clonetics Microvascular Endothelial Cell Growth Medium BulletKit (EGM-MV) 

500 ml Endothelial cell basal medium 
10 µg/ml Human recombinant epidermal growth factor, (0.5 ml) 
1.0 mg/ml Hydrocortisone, (0.5 ml) 
50 mg/ml Gentamicin, 50 µg/ml Amphotericin-B, (0.5 ml) 
3 mg/ml Bovine Brain Extract, (2 ml) 
10 ml Fetal Bovine Serum (EGM) or 25 ml Fetal Bovine Serum (EGM-MV) 
Prepare media in cell culture hood, aliquot into 100 ml sterile bottles. Store at 4°C. 

Trypsin/Trypsin Inhibitor 

Purchase 0.025% trypsin/0.01 % EDTA and trypsin inhibitor pre-made. Thaw and aliquot 
into 5 mls volumes (use Sterile Coming 15 ml tubes). Perform this procedure in the cell 
culture hood using STERILE pipettes. Store at - 70°C. 

Phosphate Buffered Saline (pH 7.4) 

16 g NaCl 
0.4 g KCl 
2.3 gNa2HPO4 
0.4 gKH2PO4 
1 L Ultrapure H2O 
Sterilize via 0.2 µm filtration into autoclaved bottles and store at 4°C (parafilm seal). 

Receipt of Clonetics Proliferating Cells 

1. Cells arrive in sealed flasks, filled completely with media. Check condition of cells. 

2. After arrival, wipe exterior with alcohol and place in 37°C incubator, with room air 
supplemented with 5% CO2. Incubate for 2 - 3 hours to equilibrate temperature. 

3. Warm fresh media to 37°C (5 ml for T-25 flask, 10 ml for T-75 flask). Remove excess 
media from flask and discard. Aspirate excess media from interior of cap, dry cap with 
70% alcohol (to prevent microbial contamination). Add fresh media. 

4. Loosen the cap, return to incubator. Check cells and add fresh media in 24 hrs. 
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Setup for Cryopreserved Cell Culture 

1. Plate microvascular and renal endothelial cells at a rate of 4 T-25 flasks per one cryovial. 
Plate other endothelial cells at a rate of 8 T-25 flasks per one cryovial. 

2. Prepare sterile field by cleaning hood with 70% ethanol. Be sure that the hood fan has 
been operating for 30 minutes. Locate sterile, individually wrapped serologic pipettes and 
pipette-aid. ALL items placed in sterile field must be wiped with 70% ethanol. 

3. In sterile field, transfer 5 mis warmed supplemented growth medium to each T-25 flask. 
Label with cell type, date, etc. Loosely place non-vented caps on flasks and allow to 
equilibrate at 37°C in incubator for 30 mins. 

4. Locate micropipettor, STERILE tips and 37°C water bath. 

Cryopreserved Cell Plating 

**Cryopreserved cells are very fragile, handle as little as possible!!** 

1. Remove cryovial from liquid nitrogen, wipe exterior with 70% ethanol. IN STERILE 
FIELD twist open cap of vial one-quarter tum to relive internal pressure and re-tighten. 

2. Dip the bottom¾ of the cryovial in 37°C water bath, and swirl gently for 1 to 2 minutes 
until contents are thawed. WATCH CLOSELY! Do not thaw cells for longer than 3 
minutes. 

3. Remove the cryovial immediately, wipe it dry, then with 70% ethanol and transfer to 
sterile field with warmed flasks waiting. 

4. Note the color of the fluid in the thawed vial, cells from Clonetics should have pink cryo 
solution. 

5. Remove the cap, DO NOT touch the interior threads! 

6. Using a 1000 µ1 pipetter set to 800 µl, put the tip into the solution and slowly pipette up 
and down to resuspend the cells (no more than 5 times). Avoid making air bubbles by 
keeping the tip near the bottom. 

7. Dispense equal volumes of cells into flasks. If plating four flasks, set pipettor to 250 µl, 
if plating eight flasks, set pipetter to 125 µl and dispense. 

8. Replace cap (loosely) and rock flask to distribute cells without getting cap wet. Return 
flasks to incubator. 

9. Check cells next morning, add fresh media. Most cells should be adherent. 
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Cell Maintenance 

1. Examine cells DAILY! Wipe flasks with 70% alcohol before returning to incubator. If 
cells need new media, warm (37°C) only the amount needed prior to use. T-25 flasks 
usually use 5 - 7 mls, T-75 flasks usually use about 10 - 15 mls. More confluent flasks 
need larger amounts of media. 

2. Change the growth media every other day, if cells are doing well. If cells are not doing 
well, change daily. Change the media by aspirating the old media with a STERILE 
Pasteur pipette attached to the vacuum line. Place the pipette in the comer AW A Y from 
the adherent cells. Using a STERILE serologic pipette, aseptically transfer fresh media 
down the comer of the flask away from proliferating cells. 

3. If desired, rinse cells with sterile, warmed PBS after removing old media and prior to 
adding fresh media. If there is evidence of bacterial contamination, rinse cells with PBS 
supplemented with antibiotics. 

4. Healthy cells should have clear, non-granular cytoplasm, many mitotic figures and should 
have a rapid growth rate. 

5. Cells should reach confluence in 5 - 7 days. Do not let cells get over confluent or they 
may undergo permanent contact inhibition. 

Preparation for Subculture 

1. Ensure that cell culture hood fan is running for 30 mins prior to use. Clean hood with 
70% ethanol. 

2. Thaw trypsin/trypsin inhibitor and warm to 37°C. Warm PBS to 37°C in water bath. 

3. Mark new flasks with name, date and passage number and warm in 37°C incubator. 
Generally, one T-25 confluent flask should be split into 3 T-25 flasks or 1 or 2 T-75 
flasks. One T-75 flask should be split into 3 T-75 flasks. 

4. Warm fresh media in water bath. When warm, move to STERILE field and add 5 ml 
new media to T-25 flask or 10 ml to T-75 flask. Loosen caps and return flasks to 
incubator until use. 

Subculture of Cells 

* *NOTE: Subculture of cells is a process that could result in death of cells if improperly 
done. Timing is CRITICAL!! Do NOT allow others to interrupt this process or dead cells 
may result. 
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1. Wipe flask of confluent cells with 70% ethanol and place in STERJLE field. Place the 
appropriate number of warmed, equilibrated flasks in the hood after wiping with alcohol. 

2. Aspirate old media using STERJLE Pasteur pipette and vacuum bottle, keeping tip away 
from cells. 

3. Rinse cells with warmed, sterile PBS, use 5 mls for T-25 flask and 10 mls for T-75 flask. 
Remove PBS with Pasteur pipette. 

4. Use sterile serologic pipette, add 5 ml trypsin to T-25 flask, use 10 to 15 ml for T-75 
flask. Note the time. Swirl to distribute solution. 

5. Move the flask to the inverted microscope and observe. Cells should become loose and 
detach readily. Swirl contents occasionally to detach loose cells. Note the time, 
trypsinize cells ONLY for 3 to 5 minutes or as long as necessary to detach 95% of the 
cells. When most cells are loose, rap the flask on the palm of the hand to detach 
remaining cells. 

6. IMMEDIATELY move to the cell culture hood and aseptically pipette trypsin inhibitor 
into the flask (use an equal volume to the amount of trypsin added). Swirl the flask. 

7. Using a sterile serologic pipette, remove the detached cells in trypsin/trypsin inhibitor 
solution to a sterile centrifuge tube. 

8. Aseptically add 5 to 10 mls of warmed, sterile PBS to the original flask and swirl to rinse 
any remaining cells into solution. Remove the PBS from the flask using a serologic 
pipette and place in the centrifuge tube with trypsin/trypsin inhibitor. 

9. Centrifuge for 5 to 6 minutes at 2500 rpm. Remove promptly. 

10. CAREFULLY aspirate the trypsin/trypsin inhibitor using a sterile Pasteur pipette 
attached to a vacuum bottle. DO NOT disturb the cell button!!! 

11 . Resuspend the cells in warmed media, use at least 1 ml for each flask to be seeded. 

12. Using a sterile serologic pipette, aspirate the solution from the tube and divide the 
amount into the warmed, equilibrated flasks. Usually place 1 ml of cell suspension in 
each new flask (that already contains warmed, equilibrated media). 

13. GENTLY swirl the flasks to distribute the cells and media WITHOUT getting solution 
into the cap. Loosen the cap and place in 37°C, 5% CO2 incubator. 

Because of the time sensitive nature of the subculture process, it is usually recommended that 
only one flask be subcultured at a time. However, with practice (and track shoes), a new 
flask of cells can be trypsinized while the previous flask is in the centrifuge. 
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Freezing of Cells 

1. Perform trypsinization procedure as in the subculture process. Thaw sterile DMSO and 
have ready to use. 

2. Instead of resuspending cells in media, resuspend the cells in a solution of equal parts of 
DMSO and growth media. DO NOT put one flask into one cryovial! Split the flask into 
at least 3 sterile cryovials of 1 ml each. 

3. After the cells are in the cryovial, place the vial at -20°C until solid or overnight. Then 
move the vials to -70°C until the next day, then into liquid N2• 

4. If freezing part of the flask is desired along with subculture of part of the flask, be sure to 
split the trypsin/trypsin inhibitor solution into two centrifuge tubes PRIOR to 
centrifugation. Then resuspend cells in appropriate solution. 
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Protocol for EC/RBC Adhesion Experiments 

1. Culture Human Umbilical Vein EC (HUVEC) on chamber slides until confluent. Add 1 
µg STX-1; incubate at 37 for 1 hr. Can also use Human Renal Artery EC or 
Microvascular EC. 

2. Collect heparinized whole blood and remove plasma, platelets and buffy coat. Wash 
cells 3 times in Hank's Balanced Salt Solution (HBSS) and resuspend to 3% PCV. 

3. Remove media and toxin and wash HUVEC 3X with PBS. 

4. Fill chamber with RBC suspension and incubate for 30 mins at 37. 

5. Seal with tape, invert for 30 mins and remove gasket and chamber. 

6. Stain, count numbers ofRBCs attached to HUVEC 
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Protocol For STX Staining Of Endothelial Cells 

1. Culture endothelial cells at 37°C with humidified air supplemented with 5% CO2• Grow 
cells 1 well chamber slide covered with endothelial growth medium (with antibiotics) 
until confluent. 

2. Incubate cells with 10 µI/well purified STX 1 for 24 hrs at culture conditions. 

3. After incubation, wash cells with warmed medium 3 times. 

4. Fix cells in cold (4°C) methanol for 5 minutes. 

5. Air dry. Wash slides with PBS supplemented with 3% Bovine Serum Albumin (BSA). 
Do not dry. 

6. Incubate slides with mouse 1 :250 dilution (Prepare dilution in PBS-3%BSA) of anti-STX 
1 IgG for 30 mins at 37°C. 

7. Wash cells with PBS 3% BSA 3 times. 

8. Cover slides with secondary antibody: mouse anti-lgG FITC. Dilute antibody 1 :50 in 
PBS-3% BSA. Incubate in the dark for 2 hrs at room temp. 

9. Wash with PBS-3% BSA 3 times for 10 mins each wash. 

10. Cove slide with Vecta-Shield with propidium iodide (to stain the nuclei). Seal with 
Revlon nail polish. Observe with fluorescent microscope. 
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Two-Dimensional Electrophoresis Protocol 

First Day 
Sample Preparation 

70 

28 µl RBC membrane pellet (see previo~ Rehydration Buffer 
413 µ1 Rehydration Buffer ------ 8M urea 
49 µ1 DTE stock solution, add right before use 2% CHAPS 
(0.08 g DTE in 2.5 ml rehydration buffer) 1 % IPG buffer from Amersham Pharmacia 

A few grains of Bromophenol Blue 

1. Add DTE stock solution to samples. 

2. Pipette 125 µ1 protein solution to clean 7 cm ceramic trays. Avoid air bubbles! Remove 
plastic facing from IPG strip (pH 3 - 10 Linear, Amersham Pharmacia) and place in tray, 
gel side down. Cover with dry strip cover fluid or mineral oil and tray lid. 

3. Place trays in IGphor and program to receive 2 hours rehydration followed by focusing at 
25,000 to 30,000 V*hr. Usually takes about 24 hours. 

Second Day 

SDS Equilibration Buffer 
6MUrea 
30% Glycerol 
2%SDS 
Few grains ofBromophenol Blue 
To each 10 mls of this solution, add 100 
mg DTE just prior to use 

Agarose Sealing Solution 
0.5% Agarose 
Few grains ofBromophenol Blue 
100 ml SDS running Buffer 

Modified Neuhoff Stain 
1 g G-250 Coomassie Blue 
36 ml 85% Phosphoric Acid 
340 ml Methanol 
170 g Ammonium Sulfate 
H20, q.s. to lL 

1. Remove strips from trays, strips to be run in the second dimension place immediately in 
centrifuge tube with 10 mls of SDS equilibration buffer. Equilibrate for 15 minutes. If 
unable to run second dimension that day, place strips in 15 ml centrifuge tube and freeze 
at-80°C. 

2. Boil 0.5% agarose sealing solution (with trace bromophenol blue) to liquify. Set up 
second dimension apparatus using BioRad 10 cm ReadyGels (8 - 16% gradient, 2D 
well). 
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3. Insert equilibrated gel strips into well and seal with slightly cooled sealing solution. 
Allow to polymerize. 

4. Run gel for 1.5 to 2 hours at 1 00V on ice. 

5. After dye front reaches the end of the gel, dismantle the apparatus; nick the gels to label 
and transfer to stain boats. 

6. Add Modified Neuhoff stain, cover with plastic wrap and place on rotator. Stain 
overnight 

Third Day 

1. Remove modified Neuhoff stain, transfer to clean boats and add 1 % acetic acid. Change 
solution several times until maximum visualization is achieved (usually about 2 - 3 
hours. 

2. Record image of gel using Nucleotech or other recording device. 
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